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PERIODIC OSCILLATIONS OF A COMPOSITE PENDULUM* 

V. V. KOZLOV 

The existence of periodic oscillations of a composite pendulum at noncritical levels 
of the energy integral (which has no equilibrium positions) is proved using the 
principle of least action in the Jacobi form. Estimates are obtained of the number 
of various libratory and rotational periodic oscillations depending on the total 
energy. 

Works dealing with oscillations of the composite pendulum usually consider the equilibrium 
position stability and, also, the existence and certain properties of periodic and asymptotic 
motions in the neighborhood of these positions (see, e.g., /l/). The possibility of using 
methods of the Morse theory for proving the existence of an infinite number of various period- 
ic motions of a composite pendulum for fairly large fixed constant energy was, apparently, 
first mentioned in /2/. 

1. Introduction. The composite pendulum is a mechanical system consisting of n rods 
connected by hinged joints in a homogeneous gravitational field (Fig-l). No constraints are 
imposed on the distribution of the mass of rods. The configuration space of the system is 
the n -dimensional torus T" , and the angles of rods ql,...,qn, to the vertical may be 
taken as the generalized coordinates. The configuration space may be assumed to be Euclidean 

R'Yq,, . . ..q.,), bearing in mind that the points in R”, whose q-coordinates differ by is, 
correspond to identical positions of the system. 

0 
The kinetic energy 

41 

n' 

T (cl, 9') = Caij (q)qi'qT 

is a positive definite symmetric form whose coefficients eii = Usji are period- 

01 
ic in variables Q1r . . .t q,, of period 'La. The gravitational field potential 
V(q,,...,q,) is also a function periodic in each argument and of period 2n. 

b The equations of motion 
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Fig.1 
have as their first integral the energy integral T - V = h. Since T >O,hence 
for fixed total energy h the motion occurs in region U = (h t V(q)> 0) which 

is called the region of possible motions. The set {h + V(q) = 0) represents the boundary 30 

of region D . 
Only the points q = (mln, ..,m,n) (ml,.. .,m, are integers 1 represent critical points 

of the potential V. They are all isolated and nondegenerate. Critical points correspond 
to equilibrium positions of the n-link pendulum. We call critical the values of total 
energy that correspond to these particular solutions. For noncritical values of h the bound- 
ary i3D is a smooth (n - I)-dimensional manifold. 

The solution of equations of motion at the noncritical level of the energy integral is 
periodic then and only then when its trajectory on T” is closed. As shown in /3/, the traj- 
ectories of real systems can be of two types: they either intersect the boundary dD or have 
with it exactly two common points. Solutions of the first type may be reasonably called rota- 
tions, and of the second, librations (for details see /3/). 

2. Some subsidiary statements. Let us consider a real mechanical system whose 
configuration space is R”{q,....,q,} ; let T(q, q') be the kinetic energy and V the potential 
of the force field. 

We denote by A, the transformation of R”’ relative to some point a ~= (al, . . ..a.)~ R”: 
qi-t-_q +2a, and assume the system to be invariant with respect to the A, transform, i.e. 
T (Aa q, 9‘) = T (q, 9’) and V (A,@ ~-7 V (cl). 

Lemma 1. If the trajectory of some solution q(t) passes through point 
then that curve is invariant to transform A,, (i.e. q (-t) = &q (t) : -q (t) + 2a) 1: ‘L!i? ,’ ykt) 
= q' (t). 

Proof. Since the kinetic energy T is a quadratic form of generalized velocities and 
the system is invariant to transform A, , function q'(l)= -q(t) 2n is also a solution of the 
equations of motion (1.1). Let us set q"(l) = q(- t). Since q' (0) = q" (0) and q" (0) = q"' (0) , 
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hence on the strength of the theorem on the uniqueness of solutions of Eqs. (1.1) q'(t)~q*(t) 
for all ZER. 

]LHBma 2. Let us assume that the considered system is invariant to transform & @ER"+, 
apb). If the trajectory of some solution q(t) passes through points a and b, then 

1.) there exists a z> 0 such that q (t + r) = q(t) -+ 2 (b-a) for all ~c!R ,and 
2) the velocity q'(1) is never zero. 

Proof. 1) Since the system is invariant to transforms A,- and A, I it is invariant 
to their grouping A= h&:q i-q+ 2Ib---af. Hence function q' It) = q(t)t 2 (b-a) is a solution 
of Eqs. (1.1). Let us assume for definiteness that q (0) = a . According to Lemma 1 function 
q(z) is at some instant of time T equal e=&a==a+ZCb-a) and q' (0) = q' (z) . Since the 

system is autonomous, function q"(t)= q(t+T) is also a solution of Eqs. (l.l).Since q'(O) = q"(O) 
and 4" (0) = q"' (0) , hence q'(t) = q" (1) for all t E R. 

2) Let us assume that q(t,) = 8, q(t*) = b and L* > 1%. It is obviously sufficient to show 
that q' (2) + 0 in the interval (c, $3. Let us assume the opposite, i.e. that at some instant of 
time 7 E {1,, 1$) the velocity q'(T)= 0. Since system (L.l) is reversible, point q will sub- 
sequently move along the same trajectory but in the opposite direction (see, e.g., /l/i. In 
accordance with Lermna 1 solution q(t) represents a libration whose trajectory does not contain 
point b. But this contradicts the assumptions of Lemma 2. 

According to the principle of least action in the Jacobi form the trajectories of SO~U- 
tions of Eqs. (1.1) inside region D of possible motions are geodesic lines of metric dp = 

[h + V(q)]“*dg, where & is the Riemann metric on R" which defines the kinetic energy (i.e. 
T=(ds/dt)“i2). We call the distance d(a,b) between points a,bE D the lower bound of 

lengths in metric dp 0E piecewise smooth curves from region D whose ends are at points s 
and b. The quantity 

d (a) = p&d (a, b) 

defines the distance from point aED to the boundary 80 (for details see /4/). We assume 
that the considered here system has no equilibrium positions along the boundary 80. 

LeIIRKi 3. For any Point a of the compact region D Eqs. (1.1) have a solution 9 0) 
such that q (0) = a , q (r) E aD , and the length of the non-self-intersecting curve q(t), to 
[0,x] is exactly equal 8 (a). 

Lemma 4. If d(a,b) <a(a) + 8 (b) , then Eqs. (1.1) have a solution q(t) such that 
q(tJ = a and q(tJ = b, and the length ofthenon-self-intersecting curve q(t), tf[tl,t,] is 

exactly equal d (a, B). 
Lemmas 3 and 4 were proved in /4/. 
The following statements are corollaries of Lemmas 1 and 3. 

Statement 1. Let us assume that the following conditions are satisfied: 
1) region D ER" is compact, 
2) there are no equilibrium positions along the boundary aD,, and 
3) the system is invariant to transform A, (a CGD \aD). 
Region D contains a libration whose trajectory passes through point 8. 
Let us consider, as an example, the problem of periodic oscillations in the nonlinear 

system defined by the equations IS/ 

m&' = f fzf - F fx - y), qy” = g (y) f F Is - Y) (% ms >9 (2.11 

where functions f,g, and F are assumed odd. 
system (2.1) may be written in the form of Lagrange equations with the Lagrangian 

L = 1/s (m&l + QY’~ + V (.t, Y) , V = \ f (4 kc -t \ g (Y) dy - \ F (5 - y) d b - y) 

Periodic solutions that pass through point Z= D= 0 and have two common points with the 
boundary of the region of possible motions were called in /'5/ oscillations of the normal type. 
Their existence has been established only in some particular cases, for instance, when mi= ma 
and frg. 

It can be shown that function V is invariant to transform 4% of the plane RP @! r1 : (2, 3) 
I’-) (- I, - &I) . If the set {h+V >0) is compact, then according to statement 1 there always ex- 

ist in the case of noncritical values of total energy h oscillations of the normal type 
(librations) of system (2.1). It is possible that when region {h+ V&O! is homeomorphic to 
a disk, there are at least two such oscillations. 

3, Periodic oscillations of an pg-link pendulum. Let us set 

Statement 2. If h is a noncritical value (of energy) in the interval (h-, h+), then 
at least one trajectory of the libration periodic solution passes through every critical point 
of potential V inside region {h + V(q) > 0) c T” . Different solutions pass through 
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different critical points. 

Corollary. If h is a noncritical value in the interval (h-,/z+), the number of vari- 
Ous librations in region D =-: {h + V> 0) is not less than the number of critical points in- 
side D. 

Since for all h>hh- point q =(O, . . .( O)ED I hence for h-<h<h+ the librations of 
an n -link pendulum always exist. When h (h+ and is fairly close to h' , there are at 
least P-1 librations in region D. 

Remark. These statements enhance the estimates of the number of various librations of 
an n-link pendulum obtained in /6/. 

Proof of Statement 2. Let a e R” be a critical point of potential V. It is 
possible to show that the kinetic energy T(q,q’) and the potential V(q) are invariant to 
transform A,. According to Lemma 3 it is possible to connect point aE {h + V> O}C:T” to 
some point of the boundary by a segment of the minimal geodesic yR, to which corresponds 
the geodesic ra of Jacobi's metric in region {h + V> O}cR", which connects point aER” 
to some point of 3D. Let us set r<,l' ::: n,ra . According to Lemma 1 curve r = I', [J r,' is 
the trajectory of some libration in region DC R”. The curve y on torus T" which is the 
sought libration passing through point a E T” obviously corresponds to curve r. The libra- 
tions that pass through different critical points are different, since by Lemma 2 the velocity 
of motion would, otherwise, never vanish. 

Let us consider the case when h>h+. Since then 80 = @, periodic motions can 
only be rotations. Let us investigate the problem of existence of periodic rotations of an 
n-link pendulum whose k-th link makes &k complete turns (N,,...,N,, are fixed integers) 

during one period. Weshal~callsuchmotionsrotationSOftype IN,, . . ..N.,]. 

Statement 3. For any fixed integers N,,...,iV, and any h> h+ there exist Zn-1 

different periodic rotations of the [N1,...,N,] type, with total energy h, whose traject- 
ories on Tn pass through pairs of critical points of potential V. 

Proof. Let us, first, assume that the numbers N,,...,iV, are coprime, and consider 
in the space R" a pair of critical points a’ and a“ of the potential V, whose qk-coordin- 
ates differ by zN~. These points considered as points of T" different. Let, for example, 

a’ y= (ml’ ?c, . . ., m,‘n), a” = (ml%, . . ., m,%) 
If IL>~+, the Riemannian space (R",dp) is complete /7/, hence, by the Hopf-Rinov 

theorem points a’ and a" can be connected by the shortest geodesic to which corresponds solu- 
tion q (t) of Eqs. (1.1) such that q (t') :== a’ and q (t”) = a” (t” > t’) . Since the problem is invari- 
ant to transforms' A,,, and I&-. hence by Lemma 2 there exists a number z>O such that 

q (t + 7) - q (t) = 2 (a- - a‘) = (2N,n, . . _. PN,Jc) 

N, = m,” - m,‘, . . ., N;, = m,” - m,,’ 

Fig.2 
Hence the trajectory of the respective solution on torus T" is closed, and that solution 

is a periodic rotation of the [N,, . . ..N.l type of period rr Since the numbers N,,...,N, 
are coprime, t is the least period of solution q(t) and the remaining periods are its multi- 
ples. 

Let us assume that the obtained solution q(t) passes through the critical point c. Then 
according to Lemma 2 there exist z' and I" such that 

q (t -I- 2’) - q (t) -= 2 (e -- a’), g (t + z”) - q (t) = 2 (c -a”) 

for all tS5R. Hence the periods z' and r" of that solution are multiples of 
7' -XC = z. This implies the existence of an integer K such that r - a’ == (piV,n~ .: ., $2). 
Then c - a” = (@ - l)N,n, . . ., (p - l)N,n) , which means that point c considered as a point 
of the n-dimensional torus T" coincides with one of points a’,a”E T". 
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Thus all critical points of potential V on T” split into pairs through which pass the 
trajectories of periodic rotations of type IN,, . . ..N.l , and none of these trajectories con- 
tain points of other pairs. Since the over-all number of critical points is 2" the number 
of different rotations of the pendulum that belong to the considered type is 2n-: 

Let us assume now that the numbers N,, . . ..N., are not coprime and that p>l is their 
greatest common divisor. We set N, = pN,‘, . , ., N,, = piv,,‘. According to the just provedthere 
exists 2"-' different rotations of type [Nl', . . ..N.,'J. Consider the periodic rotations deriv- 
ed from solutions of type [N1', . . ..N.,'] by an p-tuple increase of the period. They are all 
different and, evidently, of type [N,,...,N,]. The statement is proved. 

Four pairs of equilibrium positions of a three-link pendulum are shown in Fig.2 for vari- 
ous periodic rotations of type /1,2,3/. 

We shall show in conclusion thatundercertain conditions periodic rotations of a pendulum 
also exist when h<h+. To prove this let us consider a two-link pendulum whose rods are of 
equal length 1 and their mass concentrated at points 0, and Oz equal, respectively, rn; and 

mz - It can be shown that 

T = ‘I2 (m, + m312q,‘2 + ‘i2m,12q~‘2+~~~212q1’q2’ cos (ql-q2) 

V = m,gl cos q1 + m,gl (cos q1 + cos qz) 

Fig.3 

Let us consider the case when the quantity h is fairly close 
to h+. The region of possible motions in the plane R2 {ql,qz} is 
shown in Fig.3 (unshaded). We fix the value of mland make mass 

m, approach zero. When m2 is fairly small, the distance bet- 
ween points a = (0, 0) and h = (0,n) is less than the sum of 
distances from these points to the boundary of the region of pos- 
sible motions. 

0, q* E w, 41 c R’ 

and approaches 
maglcos~1>0) - 

Actually, d(a, b) does not exceed the length of segment (ql= 
which is equal 

v/m21 i [h+ ml@ + m,gl (1 -+ cas q.J]‘/’ dq2 
0 

zero as m,+O. For small m, the region of possible motions differs from (k+ 
Consequently, 

Ifzr lim a (a) = ? 
4 Ih + md cos el”‘de > 0 

m*-o 

which means that for small m, the inequality d(a, b)<a(a)+a(b) is satisfied. 
Lemma 4 implies the existence of the shortest geodesic metric dp that links points a and 

b lying inside the region of possible motions. To this geodesic corresponds the solution of 
Eqs. (1.1) at the level of the energy integral with constant h. Since the system is invari- 
ant to transforms AR and &, hence in accordance with Lemma 2 the obtained solution re- 
presents periodic rotation. 
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